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Abstract

Reinforcement learning (RL) in 3D environments with high-dimensional sensory input

poses two major challenges: (1) the high memory consumption induced by memory

buffers required to stabilise learning, and (2) the complexity of learning in partially

observable Markov Decision Processes (POMDPs). This project addresses these chal-

lenges by proposing two novel input representations: SS-only and RGB+SS, both

employing semantic segmentation on RGB colour images. Experiments were con-

ducted in deathmatches of ViZDoom [31], utilizing perfect segmentation results for

controlled evaluation. Our results showed that SS-only was able to reduce the memory

consumption of memory buffers by at least 66.6%, and up to 98.6% when a vectorisable

lossless compression technique with minimal overhead such as run-length encoding [52]

is applied. Meanwhile, RGB+SS significantly enhances RL agents’ performance with

the additional semantic information provided. Furthermore, we explored density-based

heatmapping as a tool to visualise RL agents’ movement patterns and evaluate their

suitability for data collection. A brief comparison with a previous approach [49] high-

lights how our method overcame common pitfalls in applying semantic segmentation in

3D environments like ViZDoom.
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Chapter 1

Introduction

1.1 Motivations

Reinforcement learning (RL) is a popular area in machine learning that aims to model

and solve decision-making problems in environments that are dynamic and stochastic.

RL has made a significant impact on both the academic and industrial landscapes in

recent years, fostering advancements in various fields spanning from Natural Language

Processing [72] to robotics [62] and intelligent game-playing agents [58]. However,

despite the success, RL faces significant challenges. Particularly in the pure-visual

domain, with high-dimensional sensory data as input to the algorithms, the complexity

involved in learning a partially observable Markov Decision Process (POMDP) [73] and

high memory consumption become critical bottlenecks. This project seeks to address the

above-mentioned issues by proposing two novel input representations based on semantic

segmentation: one that reduces memory usage of memory buffers by 66.6% initially

but can be further optimised to 98.6%1 while maintaining RL agents’ performance,

and another that improves performance significantly with the presence of additional

semantic information. To our best knowledge, this is the first work to propose an input

representation that reduces memory usage at this magnitude for reinforcement learning

in 3D environments.

1.1.1 The Memory Consumption Problem

Most recent advancements in RL can be further categorized as Deep Reinforcement

Learning (DRL) as they would utilize deep neural networks (DNN) [36] in the decision-

1When compressed at a vectorisable O(n) time complexity via run-length encoding [52].

1



Chapter 1. Introduction 2

making process. Before DQN [42], DRL was considered unstable and would even

diverge when the action-value function (also known as Q function [68]) is represented

with a nonlinear function approximation such as DNNs [65]. Many algorithms proposed

to stabilise DRL’s learning process utilized a technique known as experience replay [37].

Experience replay would store the data from n-latest time-steps in a replay buffer

and during training, the RL algorithms sample data from this buffer randomly, either

following a uniform distribution of probability or a biased one with various definitions

of priorities to improve sample efficiency [54].

Experience replay helps to stabilise learning by removing the correlations that are

presented in the sequence of observations acting as input to the RL agents [42], reducing

the probability of the agents overfitting to recent experiences. This benefit comes at

the cost of memory consumption when input data is high-dimensional such as image

or video. Policy gradient [63] RL algorithms such as trust region policy optimization

(TRPO) [55] or proximal policy optimization (PPO) [57] typically do not make use

of experience replay, however, they may still make use of similar memory buffer

components. These memory buffers share the same memory consumption concerns as

the replay buffer despite serving different purposes.

1.1.2 Importance of Understanding Visual Input

In RL, especially with environments closely mimicking real-world scenarios, the ability

of an agent to interpret visual information is crucial for high-quality decision-making.

Visual perception is crucial to transferring the knowledge of RL agents that have been

trained in virtual, computer-simulated environments to real-world applications in areas

such as autonomous driving and robotics. This is where semantic segmentation comes

into play, as it provides additional information to label and categorise different elements

in the current scene, much like how we humans would naturally do by instinct.

As a human, we can understand objects in the environment with different appear-

ances than what was previously known to us, this stems from our ability to assign labels

to these unseen entities describing what class of objects they belong to semantically,

with relation to other objects presented in the scene. For example, when one is playing a

video game and sees a new demonic figure appearing on-screen while holding an object

that looks like it can be used as a ”weapon”, we naturally correlate this information of us

holding a weapon to the demonic appearance and would draw the conclusion that ”this

is a new enemy” and potentially also a slight hint of ”I should try to attack it”. Semantic
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segmentation (SS) is a task in machine learning that models this behaviour/ability,

taking images as input and for every pixel in the input, the SS model would output the

confidence level for each semantic class this pixel might belong to. For each pixel, the

class with the highest confidence level is selected to produce an SS mask, which labels

the semantic class of every pixel in an image.

1.1.3 Our Proposed Methods

To address the challenges of high memory consumption and improve performance in

visually complex/noisy 3D environments, this project proposes two new representations

of the input observation for RL agents. By using SS masks either as a replacement or an

augmentation to the well-adopted RGB colour images in previous literature [31,35], we

aim to significantly reduce memory usage with the SS-only representation and enhance

the agents’ robustness and decision-making capabilities with SS+RGB:

1. SS-only: a predicted SS mask is used as input to RL agents directly, reducing

memory consumption of memory buffers by cutting the number of colour channels

to 1/3 with reduced bit-depth for each pixel. This also adds new compression

potentials for techniques such as run-length encoding (RLE) [52] which can

further reduce memory consumption to less than 2% of RGB (see table 4.2).

2. SS+RGB: a predicted SS mask is added as the fourth colour channel to augment

the RGB image and provide semantic information to the RL agents.

We chose to evaluate the effectiveness of our proposed method in Doom, a 3D

First-Person-Shooting (FPS) video game commonly used as benchmark for visual-

perception-based control in 3D environments [31, 35]. The ViZDoom [31] platform is

an open-source project built upon ZDoom [16], a source port of the original Doom game

engine. ViZDoom is designed as a tool for visual-perception-based machine learning

and provides API for direct access to the game engine, allowing perfect, ground-truth

SS results to be obtained.

In this project, all of our experiments are run with the PPO [57] model as our RL

agent, as it was well-known for being stable [17] and has been shown to work well

with ViZDoom scenarios in literature [49]. A DeepLabV3 model [5] with ResNet-

101 [15] backbone was trained to perform the semantic segmentation task. To evaluate

its real-world performance, we adopted the mean intersection over union (mIoU) metric.
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According to our measurement, the mIoU of its predictions with ground truth on each

map ranged from 0.8462 to 0.6833 in actual game-play sessions of the SS+RGB agent.

Our results showed that the SS+RGB variants outperformed the baseline RGB agents

significantly in all evaluated scenarios, both seen and unseen. A previous state-of-the-art

paper [35] stated that using RGB colour images (3 colour channels) as input yielded

better performance than grayscale images (1 colour channel) in ViZDoom, our proposed

SS-only representation also uses one channel only, yet yielded comparable performance

with baseline RGB models while cutting down memory consumption significantly. Both

the proposed and baseline methods surpassed the best results of the built-in ZCajun

bots4, which used node-based navigation and had near-perfect information about the

whole map. Note that both the SS model and RL agents have been trained on only one

map5 to better represent real-world situations where unseen data is common.

1.2 Related Works & Novelty of Our Proposed Methods

A simple example of SS improving visual-perception-based control performance in

RL is 2D video game playing, a previous study [43] has shown that utilizing semantic

segmentation masks as input to RL agents, their ability to play the Super Mario Bros

video game saw a significant improvement in robustness when controlling in unseen

environments with similar appearances to the ones RL agents have been trained on

and the generalisation performance improved as the SS-augmented agents were able

to learn multiple levels simultaneously during training compared to baseline models

that attempt to overfit to specific levels and are unable to learn a policy that consistently

performs well in multiple levels.

For a more complex example in the field of robotics, research has shown that SS

enables RL agents to transfer a learnt control policy from an indoor environment to an

outdoor environment during evaluation effectively and outperformed every RL agent

that used RGB images or depth maps as input [20].

While a previous study [49] has explored replacing RGB inputs with an SS-based

representation in ViZDoom deathmatches using PPO-based RL agents, our work made

several novel contributions and addressed some potential issues in the previous work

2In the trained map (Map 1).
3In a complex, unseen map with structures that were not present in training data (Map 3).
4This bot was not well-document due to its age, information of it can still be found at this website (as

of the writing of this dissertation in August 2024): https://www.doomworld.com/mellow/bots.shtml
5We chose Map 1, a map used by a similar study [49].

https://www.doomworld.com/mellow/bots.shtml
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that led to its unexpected results, which showed only a marginal improvement for using

DNN-predicted SS compared to normal RGB colour input. We attribute the lower-

than-expected improvement to multiple potential factors instead of the unsuitability of

semantic segmentation in 3D environments:

1. They used an SS model (a DeepLabV3+ model [6], ResNet-101 as backbone [15])

with a higher resolution for input images than their PPO agents, the additional

down-sampling (the predicted SS masks is already up-sampled twice within

DeepLabV3+) may induce unwanted artefacts and loss of critical information.

2. An arbitrary colour palette was used to map the predicted SS masks back to

RGB colour space, the colour palette may not be ideal in representing relation-

ships between semantic classes as neither the Euclidean distance nor the cosine

similarity between RGB values of different classes correspond to a meaningful

measurement of their actual semantic similarities.

3. The previous issue is further amplified by the RGB-based down-sampling to

produce the input image for the RL agents, as common down-sampling algorithms

for RGB images typically involve averaging or interpolation of pixel values, the

colour palette did not account for down-sampling and added additional noise to

the RL agents’ input.

4. The training and testing dataset for semantic segmentation may not represent the

input game frames in actual game-play sessions and the model may have overfit

to the dataset. The reported mIoU was as high as 0.982 yet the performance

difference between predicted segmentation and perfect segmentation is more

significant than its improvement to the RGB baseline.

Despite using only the same map as the previous study to train both the RL agents

and the SS model, we avoided the pitfalls of unnecessary down-sampling and arbitrary

colour mapping by directly utilizing SS masks in their original form, ensuring the

preservation of semantic information while not adding any presumed relationship

between semantic classes. Additionally, we evaluated the agents on different unseen

maps instead of only the one they were trained on and included an additional frame-

stacking option for SS-only agents, utilising the reduced memory usage to our advantage.

We also performed an analysis of each agent’s behaviour (movement patterns, weapon

usage, etc.) to provide insights into how learnt policies are affected by different input

representations. Finally, we noticed the compression potential of SS masks and provided
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evidence for a 98% reduction in memory usage compared to storing raw RGB input

while introducing minimal overhead in table 4.2.

For semantic segmentation, we opted to use a slightly simpler DeepLabV3 [5]

model with the same ResNet-101 backbone for faster inference without the additional

decoder structure in DeepLabV3+. To obtain a dataset that is more representative of

actual game-play sessions, we performed a heatmap analysis of our initial batch of RL

agents trained with perfect SS masks obtained from ViZDoom and cherry-picked an

agent that visits every corner of the map most uniformly to build the dataset. Evaluation

of our SS model was performed on game-play sessions with our best SS+RGB PPO

agent and further analysed with per-class IoU to provide additional insight.

1.3 Objectives

This project is guided by the following hypotheses:

• Replacing the three-channel RGB input to RL agents in 3D environments with

a one-channel semantic segmentation mask will significantly improve training

memory efficiency without substantially reducing performance.

• The semantic segmentation mask can also be efficiently and effectively lossless

compressed utilising a vectorisable algorithm at O(n) time complexity.

• Stacking multiple subsequent SS masks will provide additional temporal informa-

tion to an RL agent, leading to improved decision-making.

• Augmenting the RGB input with an additional semantic segmentation channel

will improve RL agents’ robustness and performance in 3D environments.

Experiments conducted for this project all involve the augmentation or replacement

of RGB colour input to RL agents with DNN-predicted SS masks, we would not

be converting the predicted 1-channel SS masks back to 3-channel RGB images as

they are simply another representation of the SS masks, with additional redundant or

meaningless information which may cause the training to be more unstable.



Chapter 2

Background

In this section, we will review the background materials on artificial neural networks,

semantic segmentation, reinforcement learning, and applications of AI with video

games.

2.1 Artificial Neural Networks

Artificial neural network (ANN) [27] is a class of machine learning models that draw

inspiration from the structure of the human nervous system, especially the neural

networks in the brain. A typical ANN consists of three types of layers: input layer that

receives raw or pre-processed data as input to the ANN, output layer that produces the

final predictions given the input data, and hidden layer that is placed between input

and output layers to process and extract high-level features from the input data.

A typical layer in an ANN contains one or multiple neurons, which act as the smallest

unit in an ANN. The neurons of one layer would connect to neurons of subsequent

layers, with a weight assigned to each connection. A neuron’s ”activation value” is

calculated as the weighted sum of all incoming connections from previous layers. Thus,

the transformations between layers are essentially linear. This type of layer is known as

fully connected layers or dense layers.

2.1.1 Backpropagation

The weighted connections between two fully connected layers can be represented as

weight matrices and these matrices are updated during the training phase of their ANN

models. The most common method for training ANNs is backpropagation [36], a

7
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technique that updates every weight value with a small fraction of its gradient w.r.t. the

errors measured between expected output (also known as ground truth) and output of

the ANN, the gradient is inversed to minimise error instead of increasing it. The small

fraction is kept consistent throughout the whole ANN and is known as the learning
rate of the model, controlling the magnitude of gradient updates.

The name ”backpropagation” comes from the back-to-front nature of its operation,

the last layer would have its gradients w.r.t. output errors calculated first, and each layer’s

gradient values are calculated w.r.t. gradient values of the layer behind it, propagating

backwards toward the first layer.

2.1.2 Deep Neural Networks

ANNs with multiple hidden layers are also known as deep neural networks (DNN),
it has been shown that ANNs with at least one hidden layer can act as universal

approximators for functions given that at least one hidden layer would contain a type of

non-linear activation function [21].

2.1.2.1 Activation Function

Because multiple linear transformations can be combined into one, there is no benefit

in building an ANN with hidden layers and the only functions this type of ANN can

approximate are linear transformations. To approximate non-linear transformations, an

activation function is typically applied to neurons in non-input layers to break linearity.

An activation function is simply a non-linear function that is applied to the activation

value of neurons, the most commonly used functions are Sigmoid (logistic sigmoid),

Tanh (hyperbolic tangent), and ReLU (rectified linear unit). According to [9], the choice

of activation functions can have a significant impact on an ANN’s ability to converge to

an optimum approximator for the specific task.

2.1.3 Convolutional Neural Networks

Convolutional neural networks (CNN) [10, 36] are a specific type of ANNs that utilise

convolutional layers for feature extraction. A convolutional layer replaces the weighted

connections (as seen in fully connected layers) with a set of n-dimensional tensors

(which are matrices in 2D and vectors in 1D) known as convolution kernels. Each

kernel would perform a mathematical operation known as ”convolution” with the input
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to the layer, the convolutions of input data and every kernel are stacked together to form

the final output.

Traditionally, kernels with fixed values such as the Sobel operator [60] have been

widely used in computer vision tasks like edge detection. These kernels would contain

presumed knowledge from human experts and are used to extract features designed

by their creators, this process is called ”handcrafted feature extraction”. The kernels

in CNN are automated and learnable instead, they are updated during every backprop-

agation with other learnable parameters such as weight matrices to capture common

patterns and extract high-level features that are considered valuable by the model.

2.2 Semantic Segmentation

Image segmentation is a fundamental task in computer vision that performs the partition-

ing of a whole image into multiple segments, with each of these segments corresponding

to different objects or different parts of an object. Traditionally, non-neural1 image

segmentation techniques focused on exploiting patterns in low-level features like colour

and intensity, these approaches are highly dependent on knowledge from human experts

and typically perform poorly in unseen data. While some of these techniques such

as pixel value thresholding [70] or kernel-based edge detection [47] are still relevant,

CNNs can perform the task well enough without much human intervention. Most recent

researches in computer vision have moved to a more advanced task which is semantic

segmentation.

Figure 2.1: From left to right: an unprocessed RGB game frame from Doom; perfect

semantic segmentation result; predicted semantic segmentation by DeepLabV3 model.

Semantic segmentation (SS) aims to classify every pixel within an input image into

one or multiple predefined categories. In a sense, SS can be seen as a further step in

image segmentation: instead of segmenting out different objects individually, pixels

1Not involving an artificial neural network.
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that belong to objects within the same semantic class are grouped and assigned the

same label. Unlike other tasks in computer vision such as image classification, which

assigns labels to entire images; or object detection, which identifies and localises certain

objects within an image; SS provides information that is essential in understanding

the whole scene in a human-like manner. For example in figure 2.1, pixels that belong

to walls of different textures are all assigned the same ”wall” label since all walls

belong to the same semantic class despite the variation in appearances. The pixel-wise

classification in SS is crucial to applications that would require a precise interpretation

of the environment, which includes many reinforcement learning tasks in fields like

robotics [62], autonomous vehicles [29] or medical imaging [71].

2.2.1 Fully Convolutional Network

Semantic segmentation has evolved significantly with the rise in popularity of deep

neural networks, particularly deep CNNs. Earlier successful approaches made use of

fully convolutional networks (FCN) [59], which revolutionised the field by using CNNs

for dense prediction tasks. FCN replaced all fully connected layers in typical DNN

with convolutional layers, which produces spatial maps of scores for each semantic

class which matches the shape of the original input image. This approach yielded good

performance when trained in an end-to-end fashion with pixel-wise labelled data acting

as the ground truth.

Figure 2.2: Residual connection, source: figure 2 of [15]

2.2.2 Residual Network

Residual network (ResNet) [15] is a variant of CNN that utilises residual connections

(also known as skip connections). As illustrated in figure 2.2, a residual connection

would create a copy of the input to a certain layer inside a CNN, apply a certain

transformation to the copy, and add it to the output of a later layer. Two transformations
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were proposed in the original paper: identity transformation and convolution with a 1×1

kernel, but the former is more commonly used. Residual connections are very effective

in avoiding gradient vanishing issues that are common in deep CNNs.

2.2.3 Dilated Convolution Kernel

The receptive field of a convolution kernel is defined as the area in input data that it

can use to extract features. For a standard convolution kernel, the receptive field is

equivalent to its shape, but a dilated convolution kernel has an additional hyperparameter

known as the ”dilation rate”, which controls the distance between learnable parameters

in a dilated kernel.

As demonstrated in figure 2.3, a standard 3×3 kernel with 9 learnable parameters

is unable to capture the star pattern by itself since it requires a standard 5×5 kernel

with 25 learnable parameters. A dilated 3×3 kernel with 9 learnable parameters can

act as a compromise to the 5×5 standard kernel and capture the whole pattern with no

additional learnable parameters, at the cost of loss in detail.

Figure 2.3: A comparison of feature extraction on a star pattern (a) with: a 3×3 standard

kernel (b), a 3×3 dilated kernel (c) with dilation rate = 2, and a 5×5 standard kernel (d).

2.2.4 DeepLab

One of the previous state-of-the-art models in semantic segmentation is DeepLab [4], a

class of CNN models that demonstrated significant improvements over its predecessors

by employing an operation known as atrous convolution or dilated convolution. Atrous

convolution is a variant of convolution that expands the receptive field without the

introduction of additional learnable parameters by using dilated convolution kernels

instead of standard kernels.
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2.2.4.0.1 Atrous Spatial Pyramid Pooling By modifying the stride and dilation rate

of dilated kernels, it is possible to capture multi-scale context by adopting different

dilation rates in multiple kernels and combining them to form an image pyramid [3].

This technique is known as atrous spatial pyramid pooling (ASPP) [4] and is crucial for

the model to capture fine details and understand complex scenes in images.

Figure 2.4: Atrous spatial pyramid pooling, source: figure 4 of [4]

2.2.4.0.2 DeepLabV3 DeepLabV3 [5] is the third iteration of DeepLab and the

fastest in inference speed. Compared to its predecessors, DeepLabV3 integrated ASPP

with an additional global pooling operation over the feature map to capture image-

level features, producing a global feature vector. This vector is then up-sampled and

concatenated with the output of atrous convolutions to provide context for the input

image as a whole.

2.2.4.0.3 DeepLabV3+ DeepLabV3+ [6] built upon DeepLabV3 by introducing

an encoder-decoder architecture [53]. The additional decoder network helps to refine

segmentation, especially at object boundaries where DeepLabV3 would sometimes

fail to capture fine details. Despite the introduction of techniques such as depthwise

separable convolutions [7] to reduce the computational cost, it is still slower than

DeepLabV3 due to the additional decoder network.

2.3 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning that focuses on finding

optimal strategies in various environments. In RL, a decision-maker which is also known

as an agent would make observations of the current environment at each time-step,

these observations are representations of the current states and the set of all possible
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states is called the state space of a given problem. The agent would use the policy it

has learnt to make decisions based on one or more observations and take actions to

which the environment would respond with positive or negative rewards. The agent

seeks to maximise cumulative rewards over time by learning an optimal policy, which

would dictate the best action to take in each state of the environment. Among the

various approaches to solving RL problems, actor-critic methods [34], policy gradient

methods [63], and proximal policy optimization (PPO) [57] which combined these two

approaches, have emerged as significant techniques, with PPO models and its recurrent

variant used in all of the RL agents trained for this project.

Figure 2.5: In reinforcement learning, an agent would receive observation of the environ-

ment (1), perform a chosen action (2), and receive a reward (3).

2.3.1 Rewards

Rewards are feedback from the environment given to an agent based on its previous

actions, implying whether the actions are desirable given the corresponding states. A

positive reward incentivizes the agent to take such actions more often given the same

observations, and a negative reward would discourage the agent from learning this

state-action pair as it’s undesirable. In some environments, positive rewards would be

rewards for taking actions that are not directly desirable but may lead to ideal outcomes

in the long run, these are called ”shaping rewards” [44].

2.3.2 Markov Decision Process

RL problems are often formulated as Markov Decision Processes (MDPs). MDP is

a class of optimisation problems where the situation is partially controlled by the

decision makers’ strategies and partially stochastic. MDPs are discrete-time, meaning



Chapter 2. Background 14

the problem is not considered continuous and is modelled with discrete time-steps

instead.

An MDP consists of these following components: a state space S containing all

possible states the agent can encounter, a set of all possible actions to take known as the

action space A, a transition function T that gives the probability distribution of the

next possible states given specific state-action pairs, a reward function R determining

immediate rewards for transitioning from current state s to another state s′. To solve an

MDP, the agent must learn an optimal strategy π that maximizes a cumulative function

for the rewards. The transition functions of MDPs are often unknown in practice, in this

case, a simulator model would be used to determine the next state s′ given the current

state s and chosen action a with a simulation. The current policy π(at |st) of an RL

agent determines the action at to perform given the current state st at time-step t.

In MDP, it is assumed that observations of the environment are sufficient to represent

the current state. When this assumption does not hold, a partially observable variant of

MDP is used to model the problem.

Figure 2.6: With a 2D view (top), the agent does not have access to some important

information, for example: powerful weapons hidden behind walls (bottom-left), enemies

outside of viewing angle (bottom-center), or a map of the full environment (bottom-right).

2.3.3 Partially Observable Markov Decision Process

A partially observable Markov Decision Process (POMDP) [73] is a variation of MDP

where the current state cannot be obtained by direct observations: some information

crucial to determining the current state is often hidden from the agent in practice.

Controlling RL agents in a 3D environment using 2D visual information is often



Chapter 2. Background 15

formulated as POMDP [35,58] since the agent only receives 2D projections of a limited

view of the whole 3D environment as observations.

Essential information such as depth is missing and the observations are viewpoint-

dependent, with information required to make ideal decisions possibly obfuscated, as

illustrated in figure 2.6. In POMDP, a state st at time-step t is typically represented as

the history of observations from ot−k to ot with a finite length k up until the current

time-step t. Therefore, models with recurrent architectures such as deep recurrent Q

network (DRQN) [14] or recurrent proximal policy optimization (RPPO) [48] are often

used for agents solving POMDPs for their ability to ”memorise” previous observations.

2.3.3.1 Frame Stacking

A common approach to tackle partial observability without the use of a recurrent model

is to employ a technique known as frame stacking [42], which simply stacks the current

observation with a set number of history observations to form the input to RL agents.

2.3.4 Q-Learning

Q-learning [68] is a value-based RL algorithm which learns a state-action value function

Q(s,a) that maps a state-action pair (s,a) to its corresponding the Q (quality) value for

taking the action a given the current state s. This function is known as the Q-function or

Q-table. A Q-table has a finite size and needs to store a quality value for every possible

state-action pair, meaning that Ns×Na entries are required to be reserved in memory

when using a Q-table, where the number of possible states and possible actions are

denoted by Ns and Na. Traditional Q-learning is not suitable for solving RL problems

with a high Ns as a result.

2.3.4.0.1 Deep Q Network Deep Q network (DQN) is one of the earliest DRL

algorithms that were successful in game-playing with raw pixels as input [42], it

replaces the Q-table in Q-learning with a neural network. Since the original paper for

playing Atari games with DQN using raw pixels as input, DQN has become a popular

approach for playing video games using high-dimensional visual input.

2.3.4.0.2 Deep Recurrent Q Network Deep Recurrent Q Network (DRQN) is a

variant of DQN that introduced the recurrent neural network long short-term memory

(LSTM) [19] to solve POMDPs more effectively. The previous state-of-the-art [35] in
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playing Doom with RL utilized a DRQN model for controlling the agent during combat

encounters and a DQN model for navigation outside of combat.

2.3.5 Actor-Critic

Instead of learning the optimal policy or value function, actor-critic methods [34] com-

bined policy-based and value-based approaches to address their respective limitations.

In actor-critic methods, an actor model would be responsible for selecting the optimal

action based on a policy, while a critic model would estimate the value function and

evaluate the chosen actions.

2.3.6 Policy Gradient

Policy gradient methods [63] are a class of policy-based algorithms that optimise the

agent’s policy directly instead of the indirect approach of updating the value function (Q-

function in Q-learning). Policy gradient methods are more effective in highly stochastic

environments with continuous action spaces compared to value-based approaches such

as Q-learning.

In policy gradient models, the current policy πθ(a|s) is parameterised by the current

parameters θ of the model and the objective is to maximise the expected cumulative

reward function J(θ) w.r.t θ. The expected value of J(θ) is defined as follows, with the

initial state denoted by s0:

J(θ) =V πθ(s0) (2.1)

The policy gradient theorem defines the gradient of this objective which can be used

to perform gradient ascent for optimisation:

∇θJ(θ) = E [∇θ logπθ(a|s)Q(s,a)] (2.2)

In this expression, Q(s,a) represents the action-value function for a given state-action

pair. In practice, this Q function is often approximated or replaced by estimators such

as the advantage function A(s,a) [56] or Monte Carlo returns [61], as the true Q values

are usually not available.

The term logπθ(a|s) guides the weight updates, to increase the log probability of

selecting action a given the observation of current state s. This approach would stabilise

gradient updates and ensure that the optimisation focuses more on actions that are more

likely to lead to high returns. By following this gradient ascent, the algorithm searches

for a local maximum in J(θ).
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2.3.7 Proximal Policy Optimization

Proximal policy optimization (PPO) [57] is a popular actor-critic, policy gradient method

that improved on earlier trust region methods like trust region optimization (TRPO) [55]

by using a less computationally expensive approach for maintaining stability during

training. PPO optimises a surrogate objective that constrains the update step to prevent

large deviations between a new policy and the current one, maintaining its simplicity

while incorporating the trust region techniques from TRPO with the use of a clipping

function. The objective function of PPO is defined as follows:

LPPO(θ) = Et [min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At)] (2.3)

where rt(θ) =
πθ(at |st)

πθold(at |st)
is the probability ratio that compares the probability of taking

action at given observation of the current state st , under the current policy parameterised

by θ and the old policy θold; At is the value of the advantage function [56] at current

time-step t, a measurement of how much better at is compared to the average expected

value of actions in state st under θ; ε is a hyperparameter that controls to what extend θ

is allowed to deviate from θold, typically set to a small value like 0.2.

The two terms within the min function reflect the unclipped objective rt(θ)At and

clipped objective clip(rt(θ),1− ε,1+ ε)At , the clipping mechanism strikes a good

balance between exploration and training stability, it is the main reason PPO is known

to be stable [17] without the need for extensive hyperparameter tuning.

2.3.7.0.1 Recurrent Proximal Policy Optimization Similar to the relationship be-

tween DRQN and DQN, recurrent proximal policy optimization (RPPO) [48] is a variant

of PPO that introduced LSTM to add recurrency and solve POMDPs more effectively.

However, it is less stable from our experiences and PPO that utilises frame-stacking is

usually able to yield comparable performance to RPPO [50].

2.4 Compression Potential of Semantic Segmentation

as Input Representation in Reinforcement Learning

Semantic segmentation results are naturally more compressible than RGB colour images.

RGB images in 3D environments are often very noisy since they capture a discretised

version of the full spectrum of colour information in the scene, including frequent

variations in colour due to slightly different lighting conditions. SS masks in contrast
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only record the semantic class of each pixel in the scene, a discrete value with small

and limited range.

In high-quality SS results, pixels of the same semantic class are typically grouped

spatially close to each other, forming large and contiguous regions (as demonstrated

in figure 2.1 where the majority of the screen is covered in 3 contiguous areas of

ceiling, walls and floor). This characteristic allows lossless2 compression techniques

like Huffman coding [25], Lempel-Ziv-Welch (LZW) encoding [69] and run-length

encoding (RLE) [52] to be applied effectively.

2.4.1 Suitability of Common Lossless Compression Techniques

Huffman coding is a method that requires near-perfect knowledge of the distribution of

symbols (pixel values in the case of images) beforehand, which is often not practical

in RL, where the distribution changes frequently with the current policy of the agent.

For example, an agent may initially learn a policy that hugs walls most of the time, but

as it moves to new policies that try to accomplish the task instead of getting stuck at

walls, the frequency of seeing walls would decrease significantly. A frequent update for

the definition of symbols (also known as the Huffman tree) in Huffman coding would

induce big overheads, significantly slowing down the training of RL agents.

LZW would work well for the task, but it is not easily vectorisable in its common

form, as the operation of LZW is highly dependent on the previous data processed

and this sequential workflow along with its variable output size limited its ability to be

parallelised with modern multi-core hardware.

RLE is a suitable algorithm for the task, despite its simplicity. RLE simply identifies

repeating symbols or patterns in the raw data and replaces them with runs3 of the symbol

or pattern. The identification of runs with a specific symbol is not dependent on the

identification with another symbol, which makes RLE very vectorisable.

2.5 AI for Video Games

Learning to play video games is a relatively popular task in the field of visual-perception-

based RL, many algorithms that were developed for this task such as DQN [42] and

DRQN [14] have proven to generalize well to other areas in reinforcement learning like

2Lossless compression allows the original information to be uncompressed without any modification.
3Repeated sequence of the same symbol or pattern.
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robotics [8]. Video games such as the Atari 2600 games [1], Doom [31] and Unreal

Tournaments [12] have been naturally suitable as benchmarks for artificial intelligence

(AI) algorithms due to the ease of manipulation and well-designed rule sets that have

been tested by gamers around the world due to their commercial origins. First-person

shooter games in particular are suitable for testing algorithms that can be adapted to

more practical fields such as robotics.

The earliest published work in training AI for first-person shooter games [11]

focused on modelling human player behaviours in the game Soldier of Fortune 2,

later works in this direction turned to the Unreal Tournament (UT) series due to the

convenience provided by POGAMUT [12], a middle-ware platform that communicates

with UT to allow for controlling in-game bots with AI algorithms. These works while

fascinating, do not transfer well to real-world scenarios due to the input data being

relatively high-level and abstract, often containing information that is hidden from the

AI agents and would need to be inferred in real-world scenarios. Most recent works

utilise high-dimensional sensory inputs and are consequently closer to practical use [58].

Other interesting applications for AI in video games include: emulation of the Doom

game engine [67] via diffusion models [18], creation of digital humans via generative

AI [45] to act as NPCs4 in-game, and automated character creation with the Unity game

engine powered by large language models [41].

2.5.1 Doom

Originally released in 1993, Doom is a 3D First-Person-Shooting (FPS) video game

that revolutionised the video game industry. Despite its controversies in video game

violence and addictive game-play in the 1990s, Doom has become one of the most

memorable works in the history of video games and inspired many works in the field of

AI, including RL agents that learnt to play its deathmatches [24, 31, 35, 49], diffusion

models that emulate its graphics and game logic [67] and semantic segmentation models

that learn to segment its game frames [40].

2.5.2 ViZDoom

ViZDoom [31] is an open-source project designed specifically for training RL agents

that play Doom with purely visual information as input. ViZDoom was based on

4Non-playable characters in a video game.
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ZDoom [16], a source port of Doom’s game engine and its API provided direct access

to the game engine, enabling many useful features including:

1. The use of custom maps with customisable textures, enemy behaviour, etc.

2. Multiple options for rendering the game, including colour modes, resolutions,

whether to render certain in-game elements, etc.

3. Activation of console commands and cheat codes during game-play.

4. Access to internal variables that can be defined in ACS scripts for custom maps.

5. Access to information of game objects that are rendered on-screen and a labels

buffer which labels every pixel on-screen with an id of the object it belongs to.

Feature 5 in particular allowed perfect semantic segmentation results of a raw RGB

game frame to be extracted as the ground truth for training SS models.

2.5.2.1 Creating Custom Maps

To create a custom map (also known as ”scenarios” in ViZDoom) for training RL agents,

a map editor software like SLADE3 [30] can be used, which would provide a graphical

user interface for editing map layouts and textures. Customised scripted events can

be added with a C-like scripting language known as action code script (ACS). ACS

scripting allows custom reward definitions and events such as giving shotguns to all

players or opening a specific door after every enemy has died.

2.5.3 Frame-skipping

Frame-skipping [1] is a technique widely adopted in previous approaches [1, 24, 28,

35, 49] for training RL agents to play video games, where the RL agents only receive

input observation every k time-steps (frames), with the chosen action from the agents

repeated over all of the skipped frames. Frame-skipping is a common practice in

ViZDoom-related literature [24, 28, 35, 49], with k = 4 [35] widely accepted to be the

best value for ViZDoom in general.
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Methodology & Evaluation Framework

3.1 Conceptual Design

This section outlines the conceptual design of the project, focusing on the integration

of semantic segmentation into reinforcement learning (RL) agents operating in 3D

environments. Our primary goal was to investigate how different input representations:

raw RGB images, semantic segmentation (SS) masks, and a combination of both would

affect the performance and memory efficiency of RL agents. Three representations of

a Doom game frame have been analysed in this project, with the well-adopted RGB

input [24, 28, 31, 35, 49] acting as our baseline:

1. RGB (baseline): the most common input representation for RL in 3D environ-

ments, known to yield better performance over grayscale images [35].

2. SS-only: a novel representation that utilises DNN-predicted SS masks as input to

RL agents, capable of reducing memory consumption of RGB by 66.6% without a

significant impact on agents’ performance. With a vectorised run-length encoding

(RLE) compression, the memory consumption can be further optimised to less

than 2% of RGB without much overhead.

3. SS+RGB: a novel representation that adds a DNN-predicted SS mask as an

additional colour channel to augment the RGB image and provide additional

semantic information to improve the performance of RL agents.

We decided to test these three input representations in custom maps via the ViZDoom

platform and created a framework for training deep reinforcement learning agents with

semantic segmentation to play Doom deathmatches against built-in bots.

21
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Figure 3.1: A positional heatmap of the RL agent used to gather data for training SS

models, an SS-only PPO agent trained with perfect SS input.

Our workflow consists of the following steps:

1. Select a map for training both the SS model and the RL agents.

2. Train an initial batch of RL agents on the selected map using different hyperpa-

rameters (only learning rate for this project due to time constraints) and different

representations of input visual data: RGB (baseline), SS-only, SS+RGB.

3. Pick the best-performing agent of each input representation for further evaluation

(performance should be measured by the in-game score: frags, instead of rewards).

4. Collect positional data from evaluation episodes and perform heatmap analysis

for agents’ movement to pick the most suitable agent (that visits every corner of

the map most uniformly) for collecting labelled semantic segmentation data. The

heatmap for our data collection agent is shown in figure 3.1.

5. Run the data collection agent in the selected map and collect labelled game frames

(RGB game frames + perfect semantic segmentation result from ViZDoom) from

a large number of evaluation episodes (200 in our case).

6. Train at least one DNN model for semantic segmentation.

7. Perform further hyperparameter search (as SS-only and SS+RGB have different

learning rate requirements than RGB according to our testing).

8. Evaluate the trained RL agents on both seen and unseen maps with perfect seman-

tic segmentation information (for applicable agents) and with DNN-predicted

semantic segmentation results. The unseen maps should by default use similar
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textures for walls, floors and ceilings, but alternative versions that use different

textures can be evaluated as well.

9. Finally, evaluate the performance of built-in bots that utilised node-based naviga-

tion on the maps by hosting bot-only episodes and recording the highest scores in

each episode, this can be used as a non-neural baseline.

3.2 Selected Maps

We gathered three custom maps from an open-source project [32]12 for deathmatches

in Doom, a game-play mode that puts multiple players and possibly bots on the same

map, counting the number of kills within a predefined time limit as scores (known as

”frags” in Doom). Each map selected, as demonstrated in figure 3.2 and table 3.1 is

representative of a certain type of game-play situation to our best effort. The training
of RL agents and the SS model are all performed on Map 1 only. This is for

comparability consideration of our results since Map 1 was used to train/evaluate RL

agents and SS model in the previous study [49] for applying semantic segmentation to

ViZDoom deathmatches against built-in bots.

(a) 2D (top) and 3D (bottom) layouts of the three

maps, as displayed in SLADE3 map editor [30].

(b) Original textures in Map 1 (top) and

alternatives for comparison (bottom).

Figure 3.2: Selected maps and alternative textures.

In addition to these three maps, two additional variants of Map 1 have been tested,

as illustrated in figure B.1 of the appendix. The first one would alter the wall textures

(MFLR8 1 and BRONZE3) and another would additionally add moss to the floor texture

(FLOOR0 7), as shown in part (b) of figure 3.23.
1https://github.com/lkiel/rl-doom
2Slight modifications are made on Map 2, a pistol-only scenario, to give players access to shotguns.
3Textures tiled for better visualisation, all of the textures come from the Freedoom project [23].

https://github.com/lkiel/rl-doom
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Map Navigation Complexity Combat Intensity

Map 1 Medium Medium

Map 2 Low High

Map 3 High Low

Table 3.1: Characteristics of the three maps.

3.3 ViZDoom Configurations

For all of our maps, we used the following configurations:

• episode timeout = 5250 (2 minutes and 30 seconds, default to these maps)

• death penalty = 0 (this penalty needs to be disabled in multi-player)

• living reward = 0 (for deathmatches, we don’t incentivise survival directly)

• render hud = true (a good idea to disable, but kept for human readability)

• render crosshair = false (might introduce complexity for semantic segmentation)

• render weapon = true (allow agents to be aware of the weapon they’re holding)

• render decals = false (no reason to keep, disable to decrease rendering cost)

• render particles = false (no reason to keep, disable to decrease rendering cost)

A screen resolution of 256×144 was used for all of our agents, as it was the lowest

resolution with a 16:9 aspect ratio, providing a 108◦ field of view (FOV) and more

available information compared to 4:3 with only 90◦ FOV [35]. We enabled labels buffer

access to obtain perfect semantic segmentation results and off-screen rendering to avoid

the additional overhead between the software renderer of ViZDoom and the operating

system. As mentioned in section 1.2 in our introduction, we would not be utilising

down-sampling due to the hidden assumptions made when choosing down-sampling

techniques for SS results. However, we do believe that a comparison of down-sampling

algorithms would be interesting for future studies.

3.3.1 Action Space

Every RL agent is allowed access to the following buttons:
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(1) ATTACK, (2) MOVE FORWARD, (3) MOVE LEFT, (4) MOVE RIGHT, (5)

TURN RIGHT, (6) TURN LEFT.

This creates a relatively large action space with 26 = 64 possible combinations

of buttons. To limit the number of actions, we took the approach from literature

[49] and filtered out nonsensical combinations such as turning/moving left and right

simultaneously. Additionally, all combinations that perform any other action with an

attack were removed to simplify the decision process. After also removing the idling

action (not pressing any button), the size of our action space was reduced to 18.

3.3.2 Additional Game Arguments4 & Bots

Each game-play episode is initialised with several additional game arguments:

-host 1 -deathmatch +viz_nocheat 0 +cl_run 1 +name AGENT would host

a deathmatch, enable access to buffers considered as cheating in ViZDoom, including

the labels buffer needed for obtaining perfect SS results, force all players to always run

and set up the name of the current player.

+sv_forcerespawn 1 +sv_respawnprotect 1 +sv_nocrouch 1 +sv_noexit 1

would force dead players to respawn automatically, ensure that players are immortal for

a few frames after respawning, disable crouching, and disable exiting for the map.

For bot-only matches, the +sv_cheats 1 argument is also required, as the player

needs to be protected with the iddqd cheat code to ensure that it does not get killed by

gunshots from bots not aiming at it. The command bot_observer 1 would also be

sent to the game engine for bots to ignore the observing player.

A total of 8 bots are added at the start of each game-play episode of RL agents

via the addbot command, a ninth bot would be added to bot-only matches to keep a

consistent player count of 9. The default bot configurations from ZDoom [16] are used.

3.4 Labels Buffer in ViZDoom & Semantic Segmentation

When the labels buffer is enabled in ViZDoom, a list of rendered objects and a labels

buffer will be accessible. Inside the labels buffer are the unique IDs of the front-most

object occupying each pixel and the list of rendered objects also contains the name and

unique IDs for each object. By combining these two information, we can correctly label

the semantic class of most pixels.

4Information on game arguments can be found here: https://zdoom.org/wiki/CVARs:Configuration

https://zdoom.org/wiki/CVARs:Configuration
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3.4.1 Exceptions

There are three exceptions to the described method: walls, UI elements and the control-

lable player itself. The walls are considered line definitions instead of objects within

the rendering logic of Doom and automatically get a unique ID of 1 in the labels buffer;

UI elements can simply be ignored and not segmented since they conveniently form a

rectangular shape occupying the entirety of row 121 to 144 in the frame buffer of our

current resolution; the controllable player, after testing, was discovered to always appear

at the end of the rendered objects (as it needs to be rendered just below UI elements)

allowing us to identify its presence at a low computational cost.

3.4.2 Semantic Classes

Objects in the scene are grouped into the following semantic classes, same as [49]: (1)

Floor/Ceiling, (2) Wall, (3) ItemFog, (4) TeleportFog, (5) BulletPuff, (6) Blood, (7)

Clip, (8) ShellBox, (9) Shotgun, (10) Medikit, (11) DeadDoomPlayer, (12) DoomPlayer,

(13) Self. Objects with unknown semantic classes are labelled as Floor/Ceiling. We did

not experiment with alternative definitions of semantic classes due to time constraints.

3.5 Run-Length Encoding Applied to SS-Only Inputs

Traditionally, run-length encoding (RLE) stores the repeated symbol and length of each

run in the same data stream/array, this requires the symbol and maximum length of a

run to share the same bit-depth. In our case where the number of unique symbols is

smaller than the length of the uncompressed data, the additional bits used to store each

symbol hold no meaningful information and are essentially wasted. An improvement,

in this specific case, would be to save RLE-compressed data in three arrays of different

bit-depth, storing the repeated symbol/starting position/length of every run separately.

This variant, as described in algorithm 1 of the appendix, has a vectorised implemen-

tation [2] that was incorporated into this project for evaluation of memory consumption

after switching the input to RL agents from RGB to the proposed SS-only representation.
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3.6 Reinforcement Learning Environment

3.6.1 Environment Wrapper

To allow customisation in various aspects of the map, we created an OpenAI Gym-

nasium [64] wrapper for ViZDoom with support for features such as customisable

reward calculation, frame stacking and recording of game-play episodes in RGB+SS

representation. For all of our experiments, we utilised the frame-skipping technique

from literature [1,24,28,35,49] and set the frame-skip to 4, an optimal value that strikes

a good balance between training speed and action precision [35]. With this setting, the

RL agents would receive observations every 4 time-steps and decide on the action to

repeat before the next observation.

3.6.1.1 Rewards

The definition of rewards as shown in table 3.2, is kept the same as in reference

works [32, 49] that used the same maps. For the detection of movement, a topic not

covered in the reference works, we measured the Euclidean distance between positions

of subsequent updates and penalised the agent if displacement was less than 3 units.

This value is specifically picked for our setup with a frame-skip of 4, as Doom players

have a maximum frictionless acceleration of 1.5625 units per tic2 [39]5 and speed limit

of 30 per tic. We believe that setting the displacement threshold to 3 units strikes a good

balance between incentivising movement and not encouraging reckless strategies.

Get frag +1 Death -1

Gain x health points +0.02x Lose x health points -0.01x

Gain x units of ammo +0.02x Spend x units of ammo -0.01x

Moved after last update +0.00005 Not moved after last update -0.0025

Damage enemy by x health points +0.01x

Table 3.2: Reward definition.

3.6.2 Training Procedures

As illustrated in figure 3.3, the training of RL agents within a ViZDoom environment

has the following steps:

5Tic is a single time-step in Doom’s game logic.
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Figure 3.3: A data-flow diagram of RL in ViZDoom, modified from figure 2 of [24]

1. ViZDoom renders the current frame into its frame buffer.

2. Content of the frame buffer is pre-processed with custom algorithms for resizing

or feature extraction (semantic segmentation in our case).

3. An agent receives the pre-processed input observation and decides on an action

to perform.

4. The selected action and current observation are stored in a memory buffer.

5. The selected action is translated into valid button and mouse combinations.

6. The action is sent to ViZDoom and game logic advances for one step.

7. ViZDoom returns a reward calculated from internal game engine variables.

8. Additional reward shaping would optionally be applied to add shaping rewards.

9. The total reward is also stored in the memory buffer.

The memory buffer would be called replay buffer in RL agents that utilise experience

replay and rollout buffer in proximal policy optimization (PPO), serving slightly differ-

ent purposes. In our case with PPO-based RL agents, the rollout buffer would collect

multiple trajectories (sequences of state-action pairs) before making updates to the

policy networks in PPO. This aggregation ensures that every update update is based on

more diverse experiences, reducing the chance of overfitting to specific trajectories.

3.7 PPO-based Reinforcement Learning Agents

The PPO agents in this project are implemented with tools provided by the main and

development branches of the open-source Stable Baselines3 (SB3) project [51], utilising
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PPO models with CNN-based feature extractors. SB3 uses the OpenAI Gymnasium [64]

standard for training & evaluation environments, providing a unified API structure for

various state-of-the-art RL algorithms, allowing the PPO-based agents to train on

vectorised versions of our custom environments utilising multi-processing capabilities

of our training hardware6.

Figure 3.4: The feature extractor CNN for our RL agents. N refers to the number of

colour channels in the input representation.

As illustrated in figure 3.4, our feature extractor CNN uses a similar architecture as

the previous literature [49], with three convolution blocks. Each block consists of a 2D

convolutional layer, a batch normalisation layer [26] and a ReLU activation function

applied to the normalised output. The convolution blocks have kernel sizes of 5/4/3 and

strides of 4/2/1 respectively, extracting high-level features from the input data. A fully

connected layer is inserted after the convolution components to flatten the output feature

maps and condense them into a 128-dimensional feature vector, batch normalisation

and ReLU are applied to the feature vector to produce the final output.

A simple 2-layer ANN with tanh (hyperbolic tangent) activation function and 64

neurons in each hidden layer would take the extracted 128-dimensional feature vector

as input and predict the optimal action to take with current observations.

3.7.0.0.1 Justification The choice of ReLU activation function in the CNN is sup-

ported by evidence [9] that showed the unsuitability of other common activation func-

tions like logistic sigmoid and tanh in CNN models. The 2-layer ANN architecture was

considered a standard baseline model in SB3 and our results showed that it had enough

capacity for playing the selected maps using visual inputs, with our best RGB+SS agent

yielding performance nearly 2× of the best built-in bots7 and 3× of the author8.

664GB DDR4 RAM, i9-12900HX CPU, RTX 3080Ti Mobile GPU with 16GB GDDR6 VRAM
7The ZCajun bots were considered human-like for its latest version, with a player quoting ”Instead of

shooting fish in a barrel, you become the fish.”: https://www.doomworld.com/mellow/bots.shtml
8With a resolution of 1920×1080 and refresh rate of 35 frames per second, the best score we obtained

with the same buttons available in Map 1 was 8 (mean was about 5), while the RGB+SS agent yielded a
mean score of 19.2 with real-time semantic segmentation.

https://www.doomworld.com/mellow/bots.shtml
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3.7.1 Input Representations

All of our RL agents were trained with perfect semantic segmentation results extracted

with the method described in section 3.4, if applicable. Different RL agents would

utilise different representations of the input observations:

1. RGB (baseline): raw content of the frame buffer, with 3 colour channels.

2. SS-only: a semantic segmentation mask, with 1 colour channel.

3. RGB+SS: the 3 channels of RGB is stacked with the additional channel from

SS-only to form a 4-channel input.

4. SS(4): a frame-stacking variant of SS-only, where the 1-channel SS-only input of

the current observation is stacked with SS-only inputs from the last 3 time-steps

to form a 4-channel input.

SS(4) has been added as an alternative to RGB+SS, with the same 4 channels of input.

We hypothesised that the short history of observations would allow the SS(4) agents

to perform better at navigation tasks in complex scenarios such as the corridors of

Map 3. To accommodate for the increase in complexity involved in taking a history of

observations as input, we doubled the width of the ANN in SS(4) agents to 128.

3.7.2 Hyperparameters

The hyperparameters for the PPO-based RL agents utilising RGB, SS-only and RGB+SS

as input representations, are kept consistent except for learning rates. The agents would

interact with 4 vectorized environments (venvs), generating fixed-length trajectories of

4096 time-steps. During each training iteration, N = 4 parallel actor models would be

collecting trajectories, resulting in data from N×T = 4×4096 = 16384 time-steps to

be stored within the rollout buffer. The surrogate loss is subsequently computed using

the data in the rollout buffer, and the agents are optimised over K = 3 epochs with a

batch size of 32. For SS(4) agents, the batch size is doubled to stabilise training.

All RL agents are trained for a total of 4 million time-steps, 1 million steps per venv.

3.7.3 Failed Side Experiments with Recurrent PPO

We also experimented with recurrent proximal policy optimisation (RPPO). We planned

to conduct multiple experiments with RPPOs, but all of our setups with various network
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architectures and hyperparameters failed with catastrophic forgetting. The only one that

worked to some degree within the time constraints of this project was an RPPO-based

RL agent that replaced the ANN in PPO with a one-layer long short-term memory

(LSTM) model with a width of 64. This agent would share the LSTM model between

actor and critic, which we suspected is the main reason behind its training stability.

3.8 Heatmap Analysis for RL Agents’ Movement

With our custom wrapper for ViZDoom, positional data at each time-step was collected

for every evaluation run, allowing us to plot heatmaps to visualise each RL agent’s

movement pattern. We adopted a density-based heatmapping approach and for the

positional data at each time-step, we colour a circle with a radius of 10. The intensity at

the centre is set to 10 with a linear or exponential decay in intensity as distance from

the centre increases. After experimenting with different colouring schemes, we decided

to use this simple equation for its low complexity and ability to highlight small details:

intensity(distance) = max(0,radius−distance) (3.1)

3.9 Creation of Custom Semantic Segmentation Dataset

There are existing semantic segmentation (SS) datasets for Doom like the CocoDoom

dataset [40], however, these works were mostly done with copyrighted content (maps

and assets) of the original Doom game. Like most ViZDoom-based works [24, 28, 31,

32, 35, 49], our project made use of royalty-free assets from the Freedoom project [23],

requiring custom datasets to be built for semantic segmentation.

As mentioned in section 3.4, we utilised the labels buffer and list of rendered objects

provided by ViZDoom to extract perfect semantic segmentation results from game-play

sessions of RL agents. This allowed us to build a dataset for semantic segmentation in

Map 1 by recording 200 game-play episodes of a specific RL agent: an SS-only agent

trained at a learning rate of 3e-4 with perfect SS results, the heatmap of which has been

displayed in figure 3.1. A total of 247,068 frames were collected at a size of 256×144.



Chapter 3. Methodology & Evaluation Framework 32

3.10 Real-time Semantic Segmentation with DeepLabV3

For training a model to perform real-time semantic segmentation (SS), we split the

whole dataset randomly into training and validation sets with a 9:1 ratio. As mentioned

in previous research [43], the DeepLabV3 model from PyTorch [46] can be initialised

with weights pre-trained on a subset of the COCO 2017 dataset [38], which yielded

better performance than models trained from scratch. Although the previous work

focused on training an SS model for segmenting game frames of Super Mario Bros, a

2D sprite-based platforming game, we decided that it made sense to assume that SS on

Doom’s sprite-based 3D graphics could also benefit from the pre-training.

Figure 3.5: A comparison of semantic segmentation results with different backbones.

To train the DeepLabV3 model with a different number of semantic classes from

the 20 of the COCO dataset, we replaced the final classifier layer with a near-identical

2D convolutional layer that had 13 output channels instead of 20. As demonstrated

in figure 3.5, both ResNet-101 and MobileNetV3 [22] were tested as the backbone to

DeepLabV3, but the MobileNetV3 model appeared to have insufficient capacity for

this specific task and had difficulty yielding an mIoU score greater than 0.65 during

training.9 It was clear that MobileNetV3 learnt to localise objects in the scene with a

certain degree of success, but it failed to capture the fine shapes of objects, resulting

in random-looking polygons. ResNet-101 was chosen as the encoder backbone of our

final DeepLabV3 model for its ability to capture an object’s outline properly.

9Full comparison video of ResNet-101 and MobileNetV3 as backbones for real-time semantic segmen-
tation can be viewed on the GitHub repository of this project: https://github.com/Trenza1ore/SegDoom

https://github.com/Trenza1ore/SegDoom
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Results & Evaluation

Note: the heatmaps could not fit due to page limits and are kept in appendix instead.

4.1 Performance of RL Agents

We conducted a hyperparameter search for learning rates across all PPO-based agents to

identify the best-performing agent for each input representation. The evaluation results1

for these best agents are presented as box-and-whisker plots [66] in figure 4.1.

After 4 million training steps, all PPO-based agents significantly outperform our

non-neural baseline: the ZCajun bots built into ViZDoom. These results are derived

from 400 game-play sessions on each map for every PPO or RPPO-based agent. For

comparison, the highest scores recorded in 4000 bot-only matches on each map were

used to represent the non-neural baseline’s performance.

4.1.1 Performance on the Trained Map

As a neural baseline, the RGB agent achieved an average frag2 count of 15.2 on Map

1, exceeding the non-neural baseline’s 9.8 by over 50%. The RGB agent also had a

median higher than ZCajun’s non-outlier maximum and a 75th percentile equivalent to

the maximum of ZCajun. This confirms the robustness of our neural baseline.

The SS-only agent yielded similar results with real-time and ground-truth semantic

segmentation, with the real-time version’s average frag count (15.0) only slightly lower

than the 15.2 of ground-truth and RGB baseline, with a similar spread as showed by the

same 25th and 75th percentile. SS(4) variants of the SS-only agent performed similarly

1All results are available on our GitHub repository: https://github.com/Trenza1ore/SegDoom.
2The scores in Doom deathmatches are known as ”frags”.
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with the additional temporal information, yielding an average frag count of 15.1 for

ground-truth and 15.4 for real-time. All 4 SS-only agents yielded similar performance

within the margin of error, with the same quartiles3 except for the real-time version

of SS(4) which had slightly higher performance. This result suggests that for a task

with moderate combat intensity and navigation complexity, the optimal policy learnt by

SS-only agents would not benefit much from the additional temporal information.

RGB+SS outperformed every other agent by a significant amount with an average

frag count of 19.3 and 19.2 for ground-truth and real-time respectively, with their 25th

percentiles similar to the 75th percentile of every other PPO-based agent. The RGB+SS

results confirm that augmenting the RGB input with additional semantic information

greatly improves an RL agent’s performance.

4.1.2 Performance on the Trained Map with Textures Altered

We hypothesised that changing the wall and floor textures in Map 1 as described in sec-

tion 3.2 would have some impact on RGB-based agents and believed that observing the

changes in the performance of these agents would make an interesting side experiment.

Screenshots of these two variants of Map 1 are displayed in appendix B.1.

With only the wall textures altered, the RGB agent saw an 11% decrease in average

frag count while the RGB+SS agent only had its average decrease by 1% with ground-

truth SS and 5% with real-time SS. The RGB+SS agent with ground-truth SS was not

impacted much by the slight change in texture with its quartiles unchanged, as expected

with an optimal policy that had perfect semantic information available in the input.

Changing the floor textures in addition to the wall textures created more impact

despite the subtlety in the eyes of a human. The RGB agent had its average frag count

unchanged from results in the previous Map 1 variant but the 75th percentile is decreased

and despite sharing the same maximum, the maximum frag count in this variant of Map

1 became an outlier. The SS+RGB agent had its ground-truth performance decreased to

close-to-real-time performance, which might indicate that the RGB part in the SS+RGB

input helped to localise items on the ground.

More experiments with alternative textures would need to be carried out before any

valid conclusion can be made but the observations from this side experiment do show

that RGB+SS has better generalisation performance than the RGB baseline when the

textures of the environments are changed by a small degree.

325th/50th/75th percentiles
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4.1.3 Performance on Unseen Map with High Combat Intensity

Map 2 is an open map with high combat intensity, where all players would receive a

shotgun upon respawn instead of having to locate and pick up as in all the other maps.

This high combat intensity is shown in the average frag counts in this map: all agents

saw an increase in average frag count compared to map 1 except for the SS-only agent

that used a real-time SS input, which yielded an average frag count of 13.9, the same as

the non neural baseline.

Both SS-only agents and their SS(4) variants saw a decrease in average frag count

when moving from ground-truth to real-time for semantic segmentation. However, while

SS-only saw a 9% decrease in average frag count and a decrease in every measurement

(minimum, maximum and quartiles), the SS(4) variant only saw a small 3% decrease

in average frag count and the real-time version of SS(4) still have 75th percentile and

maximum close to its ground-truth version. SS(4) variants with an average frag count

of 16.5 for real-time and 17.1 for ground-truth are still comparable with the RGB neural

baseline’s 17.7, unlike the SS-only agents.

The neural baseline yielded a 17.7 average frag count in Map 2, with a 25th

percentile equal to the 75th percentile of the non-neural baseline. The RGB+SS agents

continue to outperform every other agent, with an average frag count of 21.5 for both

real-time and ground-truth semantic segmentation and medians higher than the 75th

percentile of all other agents.

Results from Map 2 indicate a clear advantage of having RGB input in scenarios with

high combat intensity and no need for weapon acquirement (note that this also includes

RGB+SS, which still outperformed every other agent by a significant amount). However,

the temporal information presented in SS(4) input did help to make it comparable with

the RGB baseline.

4.1.4 Performance on Unseen Map with High Navigation Complexity

Map 3 is a hard-to-navigate map with the lowest combat intensity and two hard-to-

access shotguns, located at the small chambers at the upper right and lower left corners.

Later heatmap analysis would reveal that agents tend to get trapped in this map a lot.

The map also contained structures that were not present in Map 1, such as an unpassable

see-through window, where the real-time semantic segmentation model would suffer.

The real-time SS-only agent continued to perform similarly to the non-neural

baseline, with an average frag count of 7.8 compared to 7.6 of ZCajun. However, this
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agent has the same 25th percentile and median as the neural baseline of RGB, which had

a slightly higher average frag count of 8.6. The ground-truth SS-only agent performed

much better at the real-time version, yielding an average frag count of 9.1, indicating

that the low quality in real-time semantic segmentation did hurt the performance of

SS-only agents that only take a single predicted SS mask as input.

The RGB+SS agents performed similarly to the real-time version of SS(4), with

the same values for quartiles and similar overall spread. The ground-truth version of

SS(4) yielded the best performance, with an average frag count of 10.9 and the highest

quartiles.

Results from Map 3 showed that the additional temporal information in SS(4)

helped with navigation in complex scenes and that frame-stacking would increase the

robustness of input representations that use SS masks only.

4.2 Real-time Semantic Segmentation Performance

Our semantic segmentation (SS) model employed to perform real-time SS for all

experiments used ResNet-101, a 101-layer ResNet model as the encoder backbone to

DeepLabV3. An Adam optimiser [33] was used for training, with an initial learning

rate of 1e-4, scheduled to drop to 1e-5 after 70K steps. The model was trained for 20

epochs, yielding a final mIoU score of 0.846 on Map 1. The real-time SS model added

a not negligible but still acceptable overhead to our RL agents, cutting the inference

speed in half if a new instance is created for every vectorised environment.

This result was lower than the reported 0.982 from a previous work [49] that

used a slightly more complex model and higher input resolution (320×240 instead of

256×144), but was measured on real game-play sessions rather than on a validation

subset of the same dataset used for training. As demonstrated in the previous section, our

SS model proved to be sufficient for not introducing significant performance degradation

on RL agents trained with perfect SS results at least on the map it was trained in.

Table 4.1 showed the IoU results of our SS model measured in 20 game-play

episodes of our RGB+SS model on each map. The number of samples collected from

each map varied from 95K to 100K due to variations in episode length (no observation

can be made while the agent respawns after death). It can be observed that changing the

floor texture by even a small amount degraded SS performance by a large amount for

rare semantic classes like TeleportFog or BulletPuff, although the Floor/Ceiling class

itself was barely affected. The poor identification accuracy of shotguns and dead doom
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Map mIoU Floor. Wall ItemF. Telep. Bulle. Blood Clip Shell. Shotg. Medik. DeadD. DoomP. Self

1 0.846 0.994 0.979 0.657 0.703 0.326 0.380 0.294 0.667 0.552 0.676 0.803 0.753 0.957

1w 0.777 0.983 0.944 0.622 0.526 0.155 0.388 0.274 0.706 0.560 0.654 0.770 0.622 0.955

1wf 0.717 0.982 0.945 0.635 0.341 0.085 0.370 0.241 0.673 0.536 0.612 0.779 0.607 0.954

2 0.693 0.982 0.970 0.558 0.509 0.112 0.236 NaN 0.445 0.160 0.416 0.720 0.666 0.967

3 0.683 0.981 0.908 0.510 0.290 0.032 0.320 0.117 NaN 0.260 0.583 0.550 0.662 0.952

Table 4.1: IoU and mIoU measurement of the SS model. 1w refers to the Map 1 variant

with the wall textures altered and 1wf means that both wall and floor textures are altered.

players in Map 3 also contributed to the poor performance of real-time SS-only agents,

leading to low weapon power and wasting of ammo on dead enemies respectively.

4.3 Effectiveness of SS-only: Memory Usage Evaluation

Map RGB RGB (RLE) SS SS (RLE) SS (RLE-EX)

1 (GT) 11GB 17GB (156.8%) 3.6GB (33.3%) 151MB (1.4%) 126MB (1.2%)

1 (RT) 11GB 17GB (156.6%) 3.6GB (33.3%) 135MB (1.3%) 113MB (1.0%)

2 (GT) 11GB 16GB (150.8%) 3.5GB (33.3%) 172MB (1.6%) 143MB (1.4%)

2 (RT) 11GB 16GB (150.6%) 3.5GB (33.3%) 155MB (1.5%) 129MB (1.2%)

3 (GT) 11GB 16GB (141.6%) 3.7GB (33.3%) 137MB (1.2%) 114MB (1.0%)

3 (RT) 11GB 16GB (140.3%) 3.7GB (33.3%) 145MB (1.3%) 121MB (1.1%)

Table 4.2: Comparison of memory consumption for storing 20 episodes of game-play

(without frame-skipping) for our best SS+RGB agent. This is equivalent to storing 80

episodes of game-play with a frame-skip value of 4. RLE-EX refers to utilising bitmasking

to store the RLE elements in 4 bits, which adds a small overhead for decompression.

For our size comparison, a fully-vectorised implementation [2] of the run-length

encoding (RLE) [52] algorithm was used, storing the elements, length, starting position

of runs in triplets of NumPy [13] arrays. The encoding runs at more than 400 fps on

our hardware4, introducing an essentially negligible overhead. Decoding can happen

directly on the GPU as filling operations, this overhead is also negligible as this replaces

two operations: the casting to FP325 and the movement of data between CPU & GPU

memory. Example code for the compression and decompression with this variant of

RLE can be found in appendix A.
464GB DDR4 RAM, i9-12900HX CPU, RTX 3080Ti Mobile GPU with 16GB GDDR6 VRAM
5Data type for 32-bit floating-point numbers.
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(a) Evaluation Performance on Map 1.

(b) Evaluation Performance on Map 2.

(c) Evaluation Performance on Map 3.

Figure 4.1: Box-and-whisker plots for evaluation performance of RL agents on each map,

with mean performance of agents enclosed in parentheses. RTSS refers to using our

SS model for real-time semantic segmentation, GTSS refers to using perfect semantic

segmentation (ground truth) from ViZDoom.
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Conclusions

In this project, we explored the feasibility of enhancing reinforcement learning (RL) in

3D environments through the use of semantic segmentation. Two novel representations

were proposed and evaluated in three deathmatch scenarios of ViZDoom, each repre-

senting a different type of situation. The model adopted for semantic segmentation was

a DeepLabV3 model with ResNet-101 backbone, which yielded an mIoU of 0.846 on

the trained map and 0.693 & 0.683 for the two unseen maps. The performance of our

SS model was not exceptional but this model struck a good balance between the quality

of semantic segmentation and inference speed overhead when applied to RL agents.

The SS-only input representation, as our solution to the high memory consumption

problem in RL, yielded acceptable performance while taking only 1/3 of memory

compared to the RGB baseline. Its performance was comparable to the RGB baseline

model on the trained map while performing slightly worse in unseen maps where the

semantic segmentation quality dropped. Results from our experiments implied that

the RGB input is crucial to achieving high performance in scenarios with high combat

intensity, an area where SS-only suffers. The attempt at applying a lossless compression

technique (run-length encoding) to SS-only was a major success, further reducing

memory consumption to less than 2% of RGB baseline while introducing minimal

compression overhead. The memory-saving nature of SS-only allowed us to employ the

frame-stacking technique and stack multiple observations together to provide temporal

information to an agent, allowing it to navigate complex maps better than other agents.

Our RGB+SS input representation combined the advantages of SS-only and RGB

input, achieving good performance in combat-intense situations while also using the

semantic information to guide its action, resulting in it outperforming every other input

representation without frame-stacking. However, the frame-stacking variant of SS-only

39
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can still outperform it by a small amount in scenarios of high navigation complexity

due to the presence of temporal information.

The tools and techniques developed for this project can potentially prove to be

beneficial to other projects involving RL agents in 3D environments, such as the density-

based heatmapping approach for visualisation and vectorised run-length encoding

compression for semantic segmentation masks.

5.1 Future Works

Many directions can be expanded upon for future works. One of them is the usage of

SS-only representation in off-policy RL models that made use of experience replay,

where one of the major difficulties when working with limited memory was that the

model would not be able to learn to perform high-reward actions before the replay

memory is filled with useless low-reward state-action pairs and the model could never

learn the task. With the low memory usage of compressed SS-only representation, more

experiences can be stored in the replay memory, giving the model more time to learn.

Another area to explore is using RPPO agents with shared LSTMs, recurrent models

typically perform better than non-recurrent ones in POMDP situations, as proven by the

previous state-of-the-art in ViZDoom. However, the hyperparameter tuning can still be

very demanding.

Finally, it would also be interesting to conduct more experiments on the semantic

segmentation model itself, our SS model was less than ideal due to the time constraint

of this project and for simplicity did not experiment on any down-sampling technique.
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Plch, and Cyril Brom. Pogamut 3 Can Assist Developers in Building AI (Not Only)

for Their Videogame Agents, pages 1–15. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009.

[13] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
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Appendix A

Additional Code

This part contains the additional source code and pseudocode that couldn’t fit into the

main report within the page limitations.
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A.1 Vectorised RLE Implementation in NumPy [13]

This code snippet is taken from the original post [2] with longer comments trimmed.

import numpy as np

def rle(inarray):

""" run length encoding. Partial credit to R rle function.

Multi datatype arrays catered for including non Numpy

returns: tuple (runlengths, startpositions, values) """

ia = np.asarray(inarray) # force numpy

n = len(ia)

if n == 0:

return (None, None, None)

else:

y = ia[1:] != ia[:-1] # pairwise unequal

i = np.append(np.where(y), n - 1) # include last element pos

z = np.diff(np.append(-1, i)) # run lengths

p = np.cumsum(np.append(0, z))[:-1] # positions

return(z, p, ia[i])

A.2 Naive Implementation for Reconstruction from RLE

This code snippet is an example of how RLE-compressed arrays can be reconstructed.

import numpy as np

length, pos, elements = rle(arr) # 1D example

arr_reconstructed = np.empty_like(arr) # can be a tensor on GPU

for start_pos, end_pos, elem in zip(pos, pos + length, elements):

arr_reconstructed[start_pos:end_pos] = elem # simple filling operation

print(np.all(arr == arr_reconstructed)) # > True
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A.3 Pseudocode for Vectorised Run-Length Encoding

Algorithm 1 Vectorised RLE by Checking Each Possible Symbol Individually

Require: Input array A of length n, and set of possible symbols S = {S1,S2, . . . ,Sk}
Ensure: Integer i; Arrays symbols, start positions, and lengths of length n

1: symbols← empty array[0 : n−1]

2: start positions← empty array[0 : n−1]

3: lengths← empty array[0 : n−1]

4: i← 0

5: for each symbol S j in S do ▷ Vectorised loop over all possible symbols

6: mask← (A = S j) ▷ Vectorised comparison: mask of where A equals to S j

7: run starts← find start positions(mask) ▷ Find start positions of runs (async)

8: run lengths← find run lengths(mask) ▷ Find the lengths of runs (async)

9: for each start position p in run starts do ▷ As results return asynchronously

10: Wait for corresponding length l from run lengths to be returned

11: Acquire thread lock
12: symbols[i]← S j

13: start positions[i]← p

14: lengths[i]← l

15: i← i+1

16: Release thread lock
17: end for
18: end for
19: Truncate symbols, start positions, and lengths to a length of i



Appendix B

Additional Images

This part contains the additional images that couldn’t fit into the main report within the

page limitations.
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B.1 Alternative Textures for Map 1

(a) Original.

(b) Wall textures altered.

(c) Wall and floor textures altered.

Figure B.1: Alternative textures for Map 1.



Appendix C

Additional Tables

This part contains the additional tables that couldn’t fit into the main report within the

page limitations.

C.1 Weapon Usage

• It can be observed that doubling the reward for killing and damaging enemies

encouraged the RPPO agents to pick up shotguns more often.

• More usage of the shotgun, in general, meant better performance as it is a much

stronger weapon than the default pistol.

• The altered textures in variants of Map 1 did not affect the pick-up of shotguns

by any meaningful amount.

• The low shotgun pick-up rate in Map 3 is likely the reason behind RGB+SS’s

lower performance, as its shotgun usage was above 82% in the other maps and it

likely had learnt to use shotgun efficiently.
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RL Agent Map Shotgun% Pistol%

PPO(1, RGB) map1 79 21

map1 (alt. wall) 77 23

map1 (alt. wall & floor) 79 21

map3 74 26

PPO(1, RGB+SS) map1 (gt) 83 17

map1 (rt) 83 17

map1 (rt, alt. wall) 83 17

map1 (gt, alt. wall) 83 17

map1 (rt, alt. wall & floor) 82 18

map1 (gt, alt. wall & floor) 82 18

map3 (gt) 62 38

map3 (rt) 62 38

PPO(1, SS) map1 (gt) 78 22

map1 (rt) 76 24

map3 (gt) 72 28

map3 (rt) 72 28

PPO(4, SS) map1 (gt) 71 29

map1 (rt) 72 28

map3 (gt) 70 30

map3 (rt) 69 31

RPPO(1, SS) map1 (gt) 36 64

map3 (gt) 56 44

RPPO(1, SS, 2×DR) map1 (gt) 66 34

map3 (gt) 59 41

Table C.1: Weapon usage data of different agents. gt refers to using ground truth for

semantic segmentation as opposed to rt which uses prediction from the SS model;

2×DR refers to doubling the reward for kills and shaping reward for damaging enemies

during training; alt. refers to the alternation of textures in the original map.



Appendix D

Heatmaps

The heatmaps allow us to visualise the difference in movement patterns of different

agents in each map. Each agent has its unique characteristics but also shares many

similarities. For example, all heatmaps of Map 1 showed clear traces connecting spawn

points to weapons (shotguns), indicating that all well-performing agents learnt to pick

up the shotgun as soon as it respawns. Some interesting patterns can be observed in the

chambers of Map 3 that contained the shotgun (where a frame-skip of 4 might be too

high and the agent could not turn around before hitting the wall) and the L-shape/C-

shape structure where the see-through window structure is located (the agents did not

train with this kind of structure and got stuck there a lot).
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(a) GT RGB+SS on Map 1. (b) RT RGB+SS on Map 1.

(c) GT RGB+SS on Map 1 (alt. wall). (d) RT RGB+SS on Map 1 (alt. wall).

(e) GT RGB+SS on Map 1 (alt. wall & floor). (f) RT RGB+SS on Map 1 (alt. wall & floor).

(g) RGB on Map 1. (h) RGB on Map 1 (alt. wall).

(i) RGB on Map 1 (alt. wall & floor).
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(a) GT SS-only on Map 1. (b) RT SS-only on Map 1.

(c) GT SS-only on Map 2. (d) RT SS-only on Map 2.

(e) GT RGB+SS on Map 2. (f) RT RGB+SS on Map 2.

(g) RGB on Map 2.
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(a) GT SS-only on Map 3. (b) RT SS-only on Map 3.

(c) GT RGB+SS on Map 3. (d) RT RGB+SS on Map 3.

(e) RGB on Map 3.
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